
ar
X

iv
:1

10
9.

04
35

v2
  [

q-
fi

n.
T

R
] 

 2
 O

ct
 2

01
2

The string prediction models as an invariants of time series in forex market

R. Pincak1, ∗ and M. Repasan1, †

1SORS Research a.s, 040 01 Kosice, Slovak Republic

(Dated: October 3, 2012)

In this paper we apply a new approach of the string theory to the real financial market. It is direct
extension and application of the work [1] into prediction of prices. The models are constructed with
an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is
compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial
and a financial time series. Brief overview of the results and analysis is given. The first model is
based on the correlation function as invariant and the second one is an application based on the
deviations from the closed string/pattern form (PMBCS). We found the difference between these
two approaches. The first model cannot predict the behavior of the forex market with good efficiency
in comparison with the second one which is, in addition, able to make relevant profit per year.

PACS numbers: 11.25.Wx, 89.65.Gh, 89.90.+n

Keywords: finance forex market, prediction of future prices, string theory, trading strategy

∗ pincak@sors.com
† repasan@sors.com

http://arxiv.org/abs/1109.0435v2
mailto:pincak@sors.com
mailto:repasan@sors.com


2

I. INTRODUCTION

The time-series forecasting is a scientific field under continuous active development covering an extensive range of
methods. Traditionally, linear methods and models are used. Despite their simplicity, linear methods often work
well and may well provide an adequate approximation for the task at hand and are mathematically and practically
convenient. However, the real life generating processes are often non-linear. This is particularly true for financial time
series forecasting. Therefore the use of non-linear models is promising. Many observed financial time series exhibit
features which cannot be explained by a linear model.
There are plenty of non-linear forecast models based on different approaches (e.g. GARCH [2], ARCH [3], ARMA

[4], ARIMA [5] etc) used in financial time series forecasting. Currently, perhaps the most frequently used methods are
based on Artificial Neural Networks (ANN, covers a wide range of methods) and Support Vector Machines (SVM). A
number of research articles compares ANN and SVM to each other and to other more traditional non-linear statistical
methods. Tay and Cao ([6]) examined the feasibility of SVM in financial time series forecasting and compared it to a
multilayer Back Propagation Neural Network (BPNN). They showed that SVM outperforms the BP neural network.
Kamruzzaman and Sarker [7] modeled and predicted currency exchange rates using three ANN based models and a
comparison was made with ARIMA model. The results showed that all the ANN based models outperform ARIMA
model. Chen et al. [8] compared SVM and BPNN taking auto-regressive model as a benchmark in forecasting the six
major Asian stock markets. Again, both the SVM and BPNN outperformed the traditional models.
While the traditional ANN implements the empirical risk minimization principle, SVM implements the structural

risk minimization ([9]). Structural risk minimization is an inductive principle for model selection used for learning from
finite training data sets. It describes a general model of capacity control and provides a trade-off between hypothesis
space complexity and the quality of fitting the training data (empirical error). For this reason SVM is often chosen as
a benchmark to compare other non-linear models to. Also, there is a growing number of novel and hybrid approaches,
combining the advantages of various methods using for example evolutionary optimization, methods of computational
geometry and other techniques (e.g. [10], [11]).
In this paper we apply the string model and approaches described in [1] to real finance forex market. This is an

extension of the previous work [1] into the real finance market. We derive two models for predictions of EUR/USD
prices on the forex market. This is the first attempt for real application of the string theory in the field of finance,
and not only in high energy physics, where it is established very well. Firstly we described briefly some connections
between these different fields of research.
We would like to transfer modern physics ideas into neighboring field called econophysics. The physical statistical

viewpoint has proved to be fruitful, namely in the description of systems where many-body effects dominate. However,
standard, accepted by physicists, bottom-up approaches are cumbersome or outright impossible to follow the behavior
of the complex economic systems, where autonomous models encounter intrinsic variability.
Modern digital economy is founded on data. Our primary motivation comes from the actual physical concepts [12,

13]; however, our realization differs from the original attempts in various significant details. Similarly as with most
scientific problems, the representation of data is the key to efficient and effective solutions. The string theory devel-
opment over the past 25 years has achieved a high degree of popularity among physicists [14].
The underlying link between our approach and the string theory may be seen in switching from a local to a non-local

form of data description. This line passes from the single price to the multivalued collection, especially the string
of prices from the temporal neighborhood, which we term here as string map. It is the relationship between more
intuitive geometric methods and financial data. Here we work on the concept that is based on projection data into
higher dimensional vectors in the sense of the works [15, 16].
The present work exploits time-series which can build the family of the string-motivated models of boundary-

respecting maps. The purpose of the present data-driven study is to develop statistical techniques for the analysis
of these objects and moreover for the utilization of such string models onto the forex market. Both of the string
prediction models in this paper are built on the physical principle of the invariant in time series of forex market.
Founding of a stationary states in time series of market was studied in [17]

II. DEFINITION OF THE STRINGS

By applying standard methodologies of detrending we suggest to convert original series of the quotations of the
mean currency exchange rate p(τ) onto a series of returns defined by

p(τ + h)− p(τ)

p(τ + h)
, (1)
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where h denotes a tick lag between currency quotes p(τ) and p(τ + h), τ is the index of the quote. The mean
p(τ) = (pask(τ) + pbid(τ))/2 is calculated from pask(τ) and pbid(τ).
In the spirit of the string theory it would be better to start with the 1-end-point open string map

P (1)(τ, h) =
p(τ + h)− p(τ)

p(τ + h)
, h ∈< 0, ls > (2)

where the superscript (1) refers to the number of endpoints.
The variable h may be interpreted as a variable which extends along the extra dimension limited by the string size

ls. For the natural definitions of the string must be fulfilled the boundary condition

P (1)(τ, 0) = 0 , (3)

which holds for any tick coordinate τ . We want to highlight the effects of rare events. For this purpose, we introduce
a power-law Q-deformed model

P (1)
q (τ, h) =

(

1−

[

p(τ)

p(τ + h)

]Q
)

, Q > 0 . (4)

The 1-end-point string has defined the origin, but it reflects the linear trend in p(.) at the scale ls. Therefore, the

1-end-point string map P
(1)
q (.) may be understood as a Q-deformed generalization of the currency returns.

The situation with a long-term trend is partially corrected by fixing P
(2)
q (τ, h) at h = ls. The open string with

two end points is introduced via the nonlinear map which combines information about trends of p at two sequential
segments

P (2)
q (τ, h) =

(

1−

[

p(τ)

p(τ + h)

]Q
)(

1−

[

p(τ + h)

p(τ + ls)

]Q
)

, h ∈< 0, ls > . (5)

The map is suggested to include boundary conditions of Dirichlet type

P (2)
q (τ, 0) = Pq(τ, ls) = 0 , at all ticks τ . (6)

In particular, the sign of P
(2)
q (τ, h) comprises information about the behavior differences of p(.) at three quotes

(τ, τ + h, τ + ls).
Now we define partially compactified strings. In the frame of the string theory, compactification attempts to

ensure compatibility of the universe based on the four observable dimensions with twenty-six dimensions found in the
theoretical model systems. From the standpoint of the problems considered here,compactification may be viewed as
an act of information reduction of the original signal data, which makes the transformed signal periodic. Of course,
it is not very favorable to close strings by the complete periodization of real input signals. Partial closure would be
more interesting. This uses pre-mapping

p̃(τ) =
1

Nm

Nm−1
∑

m=0

p(τ + lsm) , (7)

where the input of any open string (see e.g. Eq.(2), Eq.(5)) is made up partially compact.
Thus, data from the interval < τ, τ + ls(Nm − 1) > are being pressed to occupy ”little space” h ∈< 0, ls >. We see

that as Nm increases, deviations of p̃ from the periodic signal become less pronounced. The corresponding statistical
characteristics of all the strings and brane described above were displayed in detail in [1]. The prediction models
presented in the paper were tested on the tick by tick one year data of EUR/USD major currency pair from ICAP
market maker. More precisely, we selected period from October 2009 to September 2010.

III. CORRELATION FUNCTION AS INVARIANT

The meaning of invariant is that something does not change under transformation, such as some equations from
one reference frame to another. We want to extend this idea also on the finance market, find some invariants in the
finance data and utilize this as prediction for the following prices. Unfortunately this model is able to define only one
step prediction, see definition below.
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We suppose the invariant in a form of correlation function

C(t,l0) =

h=l
∑

h=l0

wh

(

1−
pt−h

pt−1−h

)(

1−
pt−1−h

pt−2−h

)

, (8)

with

wh =
e−h/λ

∑l
h′=0 e

−h′/λ
, (9)

including dependence on the time scale parameters l, l0 and λ. The relative weights satisfy automatically
∑l

h=0 wh = 1.
From the condition of the invariance at the step (t+ 1)

C(t,0) = C(t+1,0) ≃ Ĉ(t+1,0) (10)

where Ĉ only symbolically meaning some stationarity in the next step of correlation function and we finally obtain
the prediction

p̂t+1 = pt



1 +
C(t+1,1) − C(t,0)

w0

(

1− pt

pt−1

)



 , (11)

valid for pt 6= pt−1. These are general definitions for the correlation invariants.

A. Prediction model based on the string invariants (PMBSI)

Now we want to take the above-mentioned ideas onto the string maps of finance data. We would like to utilize
the power of the nonlinear string maps of finance data and establish some prediction models to predict the behavior
of market similarly as in the works [18–20]. We suggest the method where one string is continuously deformed into
the other. We analyze 1-end-point and 2-end-point mixed string models. The family of invariants is written using
parametrization

C(τ,Λ) = (1 − η1)(1 − η2)

Λ
∑

h=0

W (h) (12)

×

(

1−

[

p(τ)

p(τ + h)

]Q
) (

1−

[

p(τ + h)

p(τ + ls)

]Q
)

+ η1(1− η2)

Λ
∑

h=0

W (h)

(

1−

[

p(τ)

p(τ + h)

]Q
)

+ η2

Λ
∑

h=0

W (h)

(

1−

[

p(τ + h)

p(τ + ls)

]Q
)

, (13)

where η1 ∈ (−1, 1), η2 ∈ (−1, 1) are variables (variables which we may be called homotopy parameters), Q is a real
valued parameter, and the weight W (h) is chosen in the bimodal single parameter form

W (h) =

{

1−W0 , h ≤ ls/2 ,
W0 , h > ls/2 .

(14)

We plan to express p(τ + ls) in terms of the auxilliary variables

A1(Λ) = (1− η1)(1 − η2)

Λ
∑

h=0

W (h)

(

1−

[

p(τ)

p(τ + h)

]Q
)

, (15)

A2(Λ) = −(1− η1)(1− η2)

Λ
∑

h=0

W (h)

(

1−

[

p(τ)

p(τ + h)

]Q
)

pQ(τ + h) , (16)
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A3(Λ) = η1(1− η2)

Λ
∑

h=0

W (h)

(

1−

[

p(τ)

p(τ + h)

]Q
)

, (17)

A4(Λ) = η2

Λ
∑

h=0

W (h) , (18)

A5(Λ) = −η2

Λ
∑

h=0

W (h) pQ(τ + h) . (19)

Thus the expected prediction form reads

p̂(τ0 + lpr) =

[

A2(Λ) +A5(Λ)

C(τ0 − ls,Λ)−A1(Λ)−A3(Λ)−A4(Λ)

]1/Q

, (20)

where we use the notation τ = τ0 + lpr − ls. The derivation is based on the invariance

C(τ, ls − lpr) = C(τ − lpr, ls − lpr) , Λ = ls − lpr , (21)

where lpr denotes the prediction scale.
The model was tested for various sets of parameters ls, lpr, η1, η2, Q and the new parameter ǫ which is defined as

ǫ = |C(τ, ls − lpr)− C(τ − lpr, ls − lpr)| (22)

and describes the level of invariance in real data. The best prediction (the best means that the model has the best
ability to estimate the right price) is obtained by using the following values of parameters

ls = 900,

lpr = 1,

η1 = 0,

η2 = 0,

Q = 6,

ǫ = 10−10. (23)

The graphical descriptions of prediction behavior of the model with and without transaction costs on the EUR/USD
currency rate of forex market are described in Figs 1-4. During one year period the model lost around 20% of initial
money. It executed 1983 trades (Fig 1) where only 10 were suggested by the model (and earned money) and the rest
of them were random (which can be clearly seen in Figs 3,4). The problem of this model is its prediction length (the
parameter lpr), in this case it is one tick ahead. The price was predicted correctly in 48.57% of all cases (16201 in
one year) and from these 48.57% or numerally 7869 cases only 0.13% or numerally 10 were suitable for trading. This
small percentage is caused by the fact that the price does not change too often one tick ahead. One could try to
raise the prediction length to find more suitable cases for trading. This is only partly successful because the rising
parameter lpr induces a loss of the prediction strength of the model. For example when lpr = 2 (two ticks ahead)
prediction strength decreases from around 50% to 15%.
The problem is that the invariant equation 10 is fulfilled only on the very short period of the time series due to

the very chaotic nature of financial data behaviour. Therefore the PMBSI is effective only on the one step prediction
where there is very low probability that time series change significantly. The situation, however, is different for more
steps prediction where there is, on the contrary, very high probability of big changes in time series to occur, and the
following predictions have rather small efficiency in such cases. The only way how to establish better prediction also
for more steps prediction is to choose the right weights Eq.9. The right and optimized weights should considerably
extend the interval where equation 10 is fulfilled. Therefore it is also our task in the future work.

B. Experimental Setup

The experiments were performed on two time-series. The first series represented artificial data namely a single
period of a sinusoid sampled by 51 regularly spaced samples. The second time series represented proprietary financial
data sampled daily over the period of 1295 days. The performance of PMBSI was compared to SVM and to naive
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FIG. 1. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on trades for one
year period.
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FIG. 2. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on days for one
year period.

forecast. There were two error measures used, mean absolute error (MAE) and symmetric mean absolute percentage
error (SMAPE) defined as follows:

MAE =
1

n

n
∑

t=1

|At − Ft| , (24)

SMAPE =
100

n

n
∑

t=1

|At − Ft|

0.5(|At|+ |Ft|)
, (25)

where n is the number of samples, At is the actual value and Ft is the forecast value. Each time-series was divided
into three subsets: training, evaluation and validation data. The time ordering of the data was maintained; the least
recent data were used for training, the more recent data were used to evaluate the performance of the particular
model with the given parameters’ setting. The best performing model on the evaluation set (in terms of MAE) was
chosen and made forecast for the validation data (the most recent) that were never used in the model optimization
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FIG. 3. The profit of the model on the EUR/USD currency rate without transaction costs included dependence on trades for
one year period.
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FIG. 4. The profit of the model on the EUR/USD currency rate without transaction costs included dependence on days for
one year period.

process. Experimental results on the evaluation and validation data are presented below. The parameters of the
models were optimized by trying all combinations of parameters sampled from given ranges with a sufficient sampling
rate. Naturally, this process is slow but it enabled to get an image of the shape of the error surface corresponding
to the given settings of parameters and ensured that local minima are explored. The above approach was used for
both, PMBSI and SVM. The SVM models were constructed so that the present value and a certain number of the
consecutive past values comprised the input to the model. The input vector corresponds to what will be referred to
here as the time window with the length ltw (representing the equivalent of the length of the string map ls by PMBSI).

IV. COMPARISON

There was a preliminary experimental analysis of the PMBSI method performed. The goal was to evaluate the
prediction accuracy, generalization performance, convenience of the method in terms of the operators effort needed
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to prepare a working model, computational time and other aspects of the PMBSI method that may have become
obvious during the practical deployment. SVM was chosen as a benchmark. The experimental data comprised
two sets: artificial data (a single period of a sinusoid) and real world data (financial, price development). We will
provide a brief conclusion of the analysis here. Each time series was divided into three subsets for training, testing
and validation. The results were calculated on the validation sets that have been entirely absent in the process of
optimization of parameters.
PMBSI predictor does not undergo a training process that is typical for ANN and SVM where a number of free

parameters must be set (synaptic weights by ANN, α coefficients by SVM). PMBSI features a similar set of weights
(W ) but often very small and calculated analytically. The parameters to be optimized are only four: ls, Q, η1, η2.
This, clearly, is an advantage. On the other hand the optimal setting of the parameters is not easy to be found as
there are many local minima on the error surface. In this analysis the optimal setting was found by testing of all
combinations of parameters from given ranges. Fig. 5 shows the Mean Absolute Error (MAE) of the 5-steps ahead
forecast of the financial time series corresponding to various settings of ls and Q (η1, η2 = 0). But the figure makes
also obvious that PMBSI’s performance is approximately the same for a wide range of settings on this data.
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FIG. 5. MAE corresponding to various settings of ls and Q on the financial data. The red dot is the global minimum of MAE.

For PMBSI to work the elements of time series must be non zero otherwise the method will return not a number

forecasts only. The input time series must be then modified by adding a constant and the forecast by subtracting the
same constant. Even so the algorithm returned a not a number forecast in app. 20% of the cases on the financial
data. In such cases the last valid forecast was used. Due to reasons that are presently being evaluated the accuracy of
PMBSI is matching and even outperforming SVM for a single step predictions but rapidly deteriorates for predictions
of more steps ahead. Iterated prediction of several steps ahead using the single step PMBSI predictor improves the
accuracy significantly. The sinusoid used for experiments was sampled by 51 points, the positive part of the wave was
used for optimization of the parameters and the rest for validation (app. 50-50 division). Fig. 6 shows the comparison
of iterated versus the direct prediction using PMBSI. Table I shows the experimental results. The results of the best
performing models are highlighted.
The optimal ltw for SVM was 3 for all predictions. Table II shows the optimal settings found for PMBSI. For

lpr = 1 when PMBSI outperformed linear SVM the optimal length of the string map was shorter than the optimal
time window for SVM; in the remaining cases it was significantly longer.
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Method lpr MAE MAE SMAPE

eval valid valid

PMBSI 1 0.000973 0.002968 8.838798

2 0.006947 0.034032 14.745538

3 0.015995 0.161837 54.303315

Iterated PMBSI 1 - - -

2 0.003436 0.011583 10.879313

3 0.008015 0.028096 14.047025

SVM 1 0.011831 0.007723 10.060302

2 0.012350 0.007703 10.711573

3 0.012412 0.007322 11.551324

Naive forecast 1 - 0.077947 25.345352

2 - 0.147725 34.918149

3 - 0.207250 41.972591

TABLE I. Experimental results on artificial time-series

lpr ls Q η1 η2

1 2 0.30 0.80 -0.20

2 5 0.10 0.80 -0.60

3 8 0.10 0.80 -0.60

TABLE II. Optimal PMBSI parameters
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FIG. 6. Iterated and direct prediction using PMBSI on artificial data.
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V. PREDICTION MODEL BASED ON THE DEVIATIONS FROM THE CLOSED STRING/PATTERN
FORM (PMBCS)

For the next trading strategy we want to define some real values of the string sequences. Therefore we define
the momentum which acquired values from the interval (0, 1). The momentum M is not strictly invariant as in the
previous model of the time series in its basic definition. It is a trading strategy to find such place in forex time-series
market where M is exactly invariant or almost invariant and we can predict increasing or decreasing of prices with
higher efficiency. For example our predictor somewhere in time-series has 55% of efficiency to predict movement of
price but in the invariant place of our trading strategy where Eq. 26 is almost invariant the efficiency of our predictor
increased to 80%. Therefore the idea to find invariant in time series plays a crucial role in our trading strategy but
one still needs to find an appropriate expression for such prediction.
To study the deviations from the benchmark string sequence we define momentum as

M(ls,m;Q,ϕ) =

(

1

ls + 1

ls
∑

h=0

∣

∣

∣

∣

p(τ + h)− pmin(τ)

pmax(τ) − pmin(τ)
−

1

2

(

1 + cos

[

2πmh

ls + 1
+ ϕ

])∣

∣

∣

∣

Q
)1/Q

(26)

where

pstand(τ ;h; ls) =
p(τ + h)− pmin(τ ; ls)

pmax(τ ; ls)− pmin(τ ; ls)
, pstand ∈ (0, 1),

and

pmax(τ ;h; ls) = max
h∈{0,1,2,...,ls}

p(τ + h) , pmin(τ ;h; ls) = min
h∈{0,1,2,...,ls}

p(τ + h),

and ϕ is a phasee of periodic function. The momentum defined above takes the values from the interval M(ls,m;Q,ϕ) ∈
(0, 1). Periodic function cos(ϕ̃) in definition of Eq. 26 could be substituted by other types of mathematical functions.
The results with different kind of functions could be different.

A. Elementary trading strategy based on the probability density function of M

The purpose is to take advantage of it whenever the market conditions are favourable. As in the previous model
we are detrending forex data into the one dimensional topological object ”strings” with different parameters. The
trading strategy is based on the description of rate curve intervals by one value called moment of the string. These
moments are statistically processed and some interesting values of moments are found. The values directly affect
opening and closing of trade positions. Algorithm works in two complement phases. First phase consists of looking
for ”good” values of moments followed by second phase which uses results from the first phase and opening/closing
of trade positions occur. Simultaneously the first phase is looking for new ”good” values of moments.
Risk is moderated by a number of allowed trades that algorithm can open during certain period. Also it is moderated

by two paramaters which affect selection of suitable moments for trading. Maximum number of trades is 10 per hour.
Algorithm is tested on various periods of historical date. The number and period of simultaneously opened trades are
all the time monitored.
First set of parameters describes the moment (simple scalar function of several variables from the interval (0,1) ).

First set consists of these parameters: length of moment string (number of ticks or time period), quotient or exponent
of moment, frequency of moment function, phase shift of moment function. Second set of parameters controls trading
strategy and consists of these variables: maximum number of simultaneously opened trades, skewness of moments
distribution and sharpe ratio of closed trades. As soon as algorithm calculates the value of moment and finds out
that the value is ”good”, then it immediately carries out an appropriate command.
The risk of algorithm is governed by the second set of parameters and can vary from zero (low risk but also low

or zero number of trades) to the boundary values controlled by the model parameters. These boundary values are
unlimited but could be easily affected by the skewness and sharpe ratio. These parameters can limit loss to certain
value with accuracy ±2 percent but also limit overall profit significantly if low risk is desired.
Arbitrage opportunity taking advantage of the occurrence of difference in distribution. Opportunity is measured

by Kullback-Liebler divergence

DKL =
∑

j(bins)

pdf(M+(j)) log

(

pdf(M+(j))

pdf(M−(j))

)

(27)



11

where larger DKL means better opportunities (DKL > Dthreshold) e.q. when DKL > Dthreshold it means the buying
Euro against USD could be more profitably. Statistical significance means the smaller the statistics accumulated into
bins pdf(M+(j)), pdf(M−(j)), the higher is the risk (M from selected range should be widespread).
More generally we can construct the series of (ls + 1) price tics [p(τ), p(τ +1), . . . , p(τ + ls)] which are transformed

into single representative real value M(τ + ls). Nearly stationary series of M(τ + ls) yields statistics which can be
split into: branch where M is linked with future uptrend/ downtrend and branch where M is linked with future
profit/ loss taking into account transaction costs. Accumulation of pdf(M+−

long) means (profit+ / loss-) or pdf(M+−
short)

(profit+ / loss-). M+ in Eq. 27 describes when Eq. 26 bring profit and M− loss.
As in the previous section the model was again tested for various sets of free parameters ls, h, Q, ϕ. This model

can make “more-tick” predictions (in tests it varies from 100 to 5000 ticks). Therefore it is much more successful
than the previous model. It is able to make final profit of around 160% but this huge profit precedes a fall down of
140% of the initial state. It is important to emphasize that all profits mentioned here and below are achieved by using
leverage (borrowing money) from 1 to 10. The reason for leverage is the fact that the model could simultaneously
open up to 10 positions (one position means one trade i.e. one pair of buy-sell transactions). If one decides not to use
any leverage the final profit decreases 10 times. On the other hand, with using the leverage 1 to 20 the final profit
doubles itself. Of course, the use of higher leverages is riskier as also dropdowns are higher. There is, for example, in
Fig. 7 a dropdown circa 6% around 600 trades. With the use of leverage 1 to 20 this dropdown rises to 12%.
128000 combinations of model’s parameters have been calculated. Figures 7-10 describe some interesting cases of

the prediction behavior of the model with the transaction cost included on the EUR/USD currency rate of forex
market. Figures 7,8 describe the model (one set of parameters) under condition that the fall down must not be higher
than 5%. The best profit achieved in this case is 12%.
In order to sort out the best combinations of parameters it is helpful to use the statistical quantity called Sharpe

ratio. The Sharpe ratio is a measure of the excess return per unit of risk in a trading strategy and is defined as

S =
E(R−Rf )

σ
, (28)

where R is the asset return, Rf is the return on a benchmark asset (risk free), E(R − Rf ) is the mean value of the
excess of the asset return over the benchmark return, and σ is the standard deviation of the excess of the asset return.
You mention the sharpe ratio. The values of sharpe ratio for the best fit are e.g. for Fig. 10 it is value 1.896 and for
Fig. 11 it is value 1.953, where as a reference profit we choose bank with 5% profit.
Figure 9 shows the case where the Sharpe ratio has the highest value from all sets of the calculated parameters.

One year profit is around 26% and the maximum loss is slightly over 5%. Figure 10 describes the case requiring high
value of Sharpe ratio and with the aim to gain profit over 50%.
There exist sufficiently enough cases with high Sharpe ratio which leads to enhancement of the model to create

self-education model. This enhancement takes some ticks of data, finds out the best case of parameters (high Sharpe
ratio and also high profit) and starts trading with these parameters for some period. Meanwhile, trading with
previously found parameters model is looking for a new best combination of parameters. Figure 11 describes this
self-education model where parameters are not chosen and the model itself finds the best one from the financial data
and is subsequently looking for the best values for the next trading strategy.

VI. CONCLUSIONS

The model of the strings allows one to manipulate with the information stored along several extra dimensions. We
started from the theory of the 1-end-point and 2-end-point open string and continued with partially compactified
strings that satisfy the Dirichlet and Neumann boundary conditions. We have 5 free parameters in our model. We
have also tried out-of-sample tests, however, only using small data samples. We haven’t encountered ”overfitting”
due to the fact that parameters are stable enough within our string theory approach to produce profit even if we
slightly change them. For all computations in the second model we are taking bid-offer spreads into account. We are
calculating with real values of bid-offer spreads from historical data and it is dependent on where we are simulating
on Oanda or Icap etc. A number of trading per day varies from 2 to 15 depending on fit strategy.
We have shown that the string theory may motivate the adoption of the nonlinear techniques of the data analysis

with a minimum impact of justification parameters. The numerical study revealed interesting fundamental statistical
properties of the maps from the data onto string-like objects. The main point here is that the string map gives
a geometric interpretation of the information value of the data. The results led us to believe that our ideas and
methodology can contribute to the solution of the problem of the robust portfolio selection.
We established two different string prediction models to predict the behaviour of forex financial market. The first

model PMBSI is based on the correlation function as an invariant and the second one PMBCS is an application
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FIG. 7. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on trades for one
year period.
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FIG. 8. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on days for one
year period.

based on the deviations from the closed string/pattern form. We found the difference between these two approaches.
The first model cannot predict the behavior of the forex market with good efficiency in comparison with the second
one which, moreover, is able to make relevant profit per year. From the results described we can conclude that the
invariant model as one step price prediction is not sufficient for big dynamic changes of the current prices on finance
market. As can be seen in Figs. 3,4 when the transaction costs are switched off the model has some tendency to
make a profit or at least preserve fortune. It means that it could also be useful but for other kind of data, where
the dynamics of changes are slower, e.g. for energetic [21] or seismographic data [22] with longer periods of changes.
Finally the PBMSI in the form presented in this paper should be applicable with good efficiency only to other kind
of data with smaller chaotic behaviour in comparison with financial data.

Moreover PMBSI is a method under development. Unlike SVM or ANN, at this stage PMBSI does not require a
training process optimizing a large number of parameters. The experimental results indicate that PMBSI can match
or outperform SVM in one step ahead forecasts. Also, it has been shown that finding optimal settings for PMBSI
may be difficult but the method’s performance does not vary much for a wide range of different settings. Besides the
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FIG. 9. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on trades for one
year period.
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FIG. 10. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on trades for one
year period.

further test of PMBSI we consider that fast methods for optimization of parameters must be developed. Because of
the character of the error surface we have chosen to use evolutionary optimization as the method of choice. After
a fast and successful parameters’ optimization method is developed optimization of the weighting parameters (Eqs.
9,14) will be included into the evolutionary process.

The profit per year from the second prediction model was obtained from approximately 15 % and more depending
on the parameter set from the data we have chosen. This model is established efficiently on finance market and could
be useful to predict future prices for the trading strategy. Of course the model still needs to be tested further. With
the flow of new financial data the model can be more optimized and also, it could become resistant to crisis. The
presented models are universal and could also be used for predictions of other kind of stochastic data. The self-
educated models presented in Fig. 11 are very useful because they are able to find on their own the best parameter
set from data, learn about the prices and utilize these pieces of information for the next trading strategy.
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FIG. 11. The profit of the self education model on the EUR/USD currency rate with transaction costs included dependence
on trades for one year period.

FURT Solutions, s.r.o., Kosice, Slovak Republic, http://www.furt.sk. For more information about the progress of our
new string application work to financial market please follow the line http://www.sors.com/people/pincak/.
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